Numerical convergence of model Cauchy-Characteristic Extraction and Matching

Thanasis Giannakopoulos

University of Nottingham

GGD - Gr@v Seminar, Aveiro, March 22, 2023

with N. Bishop, D. Hilditch, D. Pollney, & M. Zilhão

- Motivation: accurate gravitational waveform modeling
- Background: hyperbolicity and well-posedness
- A review: hyperbolicity of the characteristic system of GR
- Cauchy-Characteristic Extraction (CCE) and Matching (CCM) with toy models: energy estimates and numerical convergence
- Conclusions: Lessons for CCE and CCM in GR

Highly accurate gravitational waveform modeling

Cauchy-Characteristic Extraction and Matching

see e.g. Winicour's 2012 Living Review and references therein

Hyperbolicity

$$\mathcal{A}^{t}(x^{\mu}) \partial_{t} \mathbf{u} + \mathcal{A}^{p}(x^{\mu}) \partial_{p} \mathbf{u} + \mathcal{S}(\mathbf{u}, x^{\mu}) = 0, \qquad (1)$$

where $\mathbf{u} = (u_1, u_2, \dots, u_q)^T$, is the state vector of the system and \mathcal{A}^{μ} denotes the principal part matrices, with $\det(\mathcal{A}^t) \neq 0$. Construct the

$$\mathbf{P}^{s}=\left(\boldsymbol{\mathcal{A}}^{t}\right)^{-1}\boldsymbol{\mathcal{A}}^{p}\boldsymbol{s}_{p},$$

where s^i is an arbitrary unit spatial vector.

Degree of hyperbolicity:

- \mathbf{P}^s has real eigenvalues for all $s^i
 ightarrow (1)$ is weakly hyperbolic (WH)
- \mathbf{P}^{s} is also diagonalizable for all $s^{i}
 ightarrow (1)$ is strongly hyperbolic (SH)
- ullet all \mathcal{A}^μ are symmetric ightarrow (1) is symmetric hyperbolic (SYMH)

Well-posedness

The PDE problem has a unique solution that depends continuously on the given data in a suitable norm.

- Strongly or symmetric hyperbolic \rightarrow well-posed IVP in the L^2 norm
- Weakly hyperbolic \rightarrow **ill-posed** IVP in the L^2 norm possibly **weakly well-posed** in a different norm

A numerical solution **can converge** to the continuum **only** for well-posed PDE problems.

Review: hyperbolicity of the characteristic system in GR

Based on: PRD 102, 064035, TG, Hilditch, Zilhão, PRD 105, 084055, TG, Bishop, Hilditch, Pollney, Zilhão

Bondi-like coordinates

- coordinates: u, r, θ, ϕ
- vector basis: ∂_u , ∂_r , ∂_θ , ∂_ϕ
- ∂_r is null & \perp to ∂_{θ} and ∂_{ϕ}

$$g_{\mu
u}=egin{pmatrix} g_{uu} & g_{ur} & g_{u heta} & g_{u\phi}\ g_{ur} & 0 & 0 & 0\ g_{u heta} & 0 & g_{ heta heta} & g_{ heta\phi}\ g_{u\phi} & 0 & g_{ heta\phi} & g_{\phi\phi} \end{pmatrix}$$

The vacuum Einstein Field Equations (EFE):

Characteristic evolution system: $R_{rr} = R_{r\theta} = R_{r\phi} = R_{\theta\theta} = R_{\theta\phi} = R_{\phi\phi} = 0$

Bondi, van der Burg & Sachs 1962, Winicour 2013, Cao & He 2013

Weak hyperbolicity of the EFE in Bondi-like coordinates

- This system is WH in Bondi-Sachs and affine null coordinates: \mathbf{P}^{θ} and \mathbf{P}^{ϕ} are non-diagonalizable.
- The root: pure gauge structure $g^{u\theta} = g^{u\phi} = 0$
- $\bullet~{\sf GR}^1$ in all Bondi-like gauges \rightarrow weakly hyperbolic PDE system.
- The CIBVP is ill-posed in the L² norm.
 Could it be weakly well-posed in another norm? (open question)
- How does this affect accuracy of CCE and CCM?

¹With up to second order metric derivatives

CCE and CCM with toy models

The toy models

SYMH when $\partial_z \psi_v$ is included, WH otherwise

Energy estimates

Well-posedness: there exists a unique solution **u** that depends continuously on the given data f in an appropriate norm $|| \cdot ||$:

 $||\mathbf{u}|| \leq Ke^{\alpha t} ||f||$, for real constants K > 1, α , and t.

SYMH IBVP:
$$||\mathbf{u}_1||_{L^2} \equiv \int_{\Sigma_{t_f}} (\phi_1^2 + \psi_{v1}^2 + \psi_1^2) + \int_{\mathcal{T}_0} (\phi_1^2 + \psi_{v1}^2) + \int_{\mathcal{T}_{\rho_{\min}}} \psi_1^2$$

$$\frac{\text{WH IBVP:}}{\int_{\Sigma_{t_f}} \left[\phi_1^2 + \psi_{\nu 1}^2 + \psi_1^2 + (\partial_z \phi_1)^2 \right] + \int_{\mathcal{T}_0} \left[\phi_1^2 + \psi_{\nu 1}^2 + (\partial_z \phi_1)^2 \right] + \int_{\mathcal{T}_{\rho_{\min}}} \psi_1^2$$

<u>SYMH CIBVP:</u> $||\mathbf{u}_2||_{L^2} \equiv \int_{\mathcal{N}_{u_f}} \psi_2^2 + \int_{\mathcal{T}_0} \psi_2^2 + \max_{\mathbf{x}'} \int_{\mathcal{T}_{\mathbf{x}'}} \left(\phi_2^2 + \psi_{\nu_2}^2\right)$

WH CIBVP:
$$||\mathbf{u}_2||_q \equiv \int_{\mathcal{N}_{u_f}} \psi_2^2 + \int_{\mathcal{T}_0} \psi_2^2 + \max_{x'} \int_{\mathcal{T}_{x'}} \left[\phi_2^2 + \psi_{v2}^2 + (\partial_z \phi_2)^2 \right]$$

Energy estimates

For CCE well-posedness is examined individually for the IBVP and CIBVP.

For CCM, the composite IBVP-CIBVP problem has to be examined as a whole.

$$\frac{\text{SYMH-SYMH:}}{||\mathbf{u}||_{L^2} \equiv \int_{\Sigma_{t_f}} (\phi_1^2 + \psi_{\nu 1}^2 + \psi_1^2) + \int_{\mathcal{N}_{u_f}} \psi_2^2 + \int_{\mathcal{T}_{\rho_{\min}}} \psi_1^2 + \max_{x'} \int_{\mathcal{T}_{x'}} (\phi_2^2 + \psi_{\nu 2}^2)$$

$$\underline{\mathsf{WH}}_{\mathsf{WH}} \underbrace{\mathsf{WH}}_{\mathsf{W}} ||\mathbf{u}||_{q} \equiv \int_{\Sigma_{t_{f}}} \left[\phi_{1}^{2} + \psi_{\nu 1}^{2} + \psi_{1}^{2} + (\partial_{z}\phi_{1})^{2} \right] + \int_{\mathcal{N}_{u_{f}}} \psi_{2}^{2} + \int_{\mathcal{T}_{\rho_{\min}}} \psi_{1}^{2} + \max_{x'} \int_{\mathcal{T}_{x'}} \left[\phi_{2}^{2} + \psi_{\nu 2}^{2} + (\partial_{z}\phi_{2})^{2} \right]$$

We cannot get an energy estimate for SYMH-WH CCM due a $\int_{\mathcal{T}_0}$ term that is not controlled by given data.

Convergence tests

- Accuracy of numerical solution: $f f_h = O(h^n)$
- Convergence factor: $Q = h_0^n/h_1^n = f_0/f_1$
- High frequency given data: random noise of amplitude A_h
- We assume the exact solution u=0 and monitor $\mathcal{C}_{\mathrm{exact}}=\log_2\frac{||u_{b_0}||_{b_0}}{||u_{b_1}||_{b_1}}$
- Every time we double resolution we drop A_h by 1/4 for no derivative variables and by 1/8 for those with derivatives $\rightarrow C_{exact} = 2$

Convergence tests

CCM between the SYMH IBVP and the WH CIBVP in different norms

Convergence tests

CCM between the SYMH-SYMH (left), WH-WH (middle) and the WH CIBVP (right) for CCE between SYMH-WH

Conclusions

Lessons for GR based on our CCE and CCM analysis for toy models:

- if the WH CIBVP is weakly well-posed, CCE can also be well-posed
- Is there an appropriate norm for the WH Bondi-like CIBVP?
- CCM as currently performed (SYMH-WH) is ill-posed and cannot provide convergent solutions
- Problem with error estimates for accurate waveforms with CCM
- A strongly or symmetric hyperbolic characteristic formulation is needed (with up to 2nd order metric derivatives)

Conclusions

Lessons for GR based on our CCE and CCM analysis for toy models:

- if the WH CIBVP is weakly well-posed, CCE can also be well-posed
- Is there an appropriate norm for the WH Bondi-like CIBVP?
- CCM as currently performed (SYMH-WH) is ill-posed and cannot provide convergent solutions
- Problem with error estimates for accurate waveforms with CCM
- A strongly or symmetric hyperbolic characteristic formulation is needed (with up to 2nd order metric derivatives)

Thank you!

Extras

CCM between the homogeneous SYMH IBVP and the WH CIBVP in different norms

Hyperbolicity of GR in the Bondi-Sachs gauge

$$ds^{2} = \left(\frac{V}{r}e^{2\beta} - U^{2}r^{2}e^{2\gamma}\right) du^{2} + 2e^{2\beta}du dr$$
$$+ 2Ur^{2}e^{2\gamma} du d\theta - r^{2}\left(e^{2\gamma} d\theta^{2} + e^{-2\gamma}\sin^{2}\theta d\phi^{2}\right).$$

$$\mathcal{T} \begin{array}{c} \mathcal{T}^{+} & \frac{\text{The PDE system:}}{\partial_{r}\beta = F_{1}(\partial_{r}\gamma),} \\ \partial_{u} & \partial_{r}\beta = F_{1}(\partial_{r}\gamma), \\ \partial_{v}\partial_{r} & \partial_{r}U = F_{2}(\gamma,\beta,\partial_{i}\gamma,\partial_{i}\beta,\partial_{ij}^{2}\gamma,\partial_{ij}^{2}\beta), \\ \partial_{r}V = F_{3}(\gamma,\beta,\partial_{i}\gamma,\partial_{i}\beta,\partial_{i}U,\partial_{ij}^{2}\gamma,\partial_{ij}^{2}\beta,\partial_{ij}^{2}U), \\ \partial_{ur}^{2}\gamma = F_{4}(\gamma,\beta,U,V,\partial_{i}\gamma,\partial_{i}\beta,\partial_{i}U,\partial_{i}V,\partial_{ij}^{2}\gamma,\partial_{ij}^{2}\beta,\partial_{ij}^{2}U) \end{array}$$

Linearize and first order reduction $\mathbf{u} = (\beta, \gamma, U, V, \gamma_r, U_r, \beta_{\theta}, \gamma_{\theta})^T$:

$$\mathcal{A}^{u}\partial_{u}\mathbf{u}+\mathcal{A}^{r}\partial_{r}\mathbf{u}+\mathcal{A}^{\theta}\partial_{\theta}\mathbf{u}+\mathcal{S}=0.$$

$$\mathcal{A}^{t}\partial_{t}\mathbf{u} + \mathcal{A}^{\rho}\partial_{\rho}\mathbf{u} + \mathcal{A}^{\theta}\partial_{\theta}\mathbf{u} + \mathcal{S} = 0, \text{ where } \mathcal{A}^{t} = \mathcal{A}^{u} + \mathcal{A}^{r} \text{ and } \mathcal{A}^{\rho} = \mathcal{A}^{r}$$
$$\mathbf{P}^{\theta} = \frac{1}{\rho} \left(\mathcal{A}^{t}\right)^{-1} \mathcal{A}^{\theta} \text{ is not diagonalizable.}$$

The Bondi-Sachs system is weakly hyperbolic.

Rendall 1990, Frittelli 2005 & 2006, TG, Hilditch & Zilhão 2020

Frame independence

Focus on the angular direction:

$$\partial_t \mathbf{u} + \mathbf{B}^{\hat{\theta}} \partial_{\hat{\theta}} \mathbf{u} \simeq \mathbf{0} \quad \longrightarrow \quad \partial_t \mathbf{v} + \mathbf{J}^{\hat{\theta}} \partial_{\hat{\theta}} \mathbf{v} \simeq \mathbf{0} \,,$$

where $\mathbf{J}^{\hat{\theta}} \equiv \mathbf{T}_{\hat{\theta}}^{-1} \mathbf{B}^{\hat{\theta}} \mathbf{T}_{\hat{\theta}}$ is the Jordan normal form and $\mathbf{v} \equiv \mathbf{T}_{\hat{\theta}}^{-1} \mathbf{u}$ the generalized characteristic variables. The non-trivial Jordan block yields

$$-\partial_t \left(2\rho U + \frac{\rho^2}{2} U_r - \beta_\theta + \gamma_\theta \right) \simeq 0,$$

$$\partial_t V - \partial_\theta \left(2\rho U + \frac{\rho^2}{2} U_r - \beta_\theta + \gamma_\theta \right) \simeq 0.$$

The generalized eigenvalue problem:

$$\mathbf{I}_{\lambda}\left(\mathbf{P}^{s}-\mathbf{1}\lambda\right)^{M}=\mathbf{0}\,,$$

where $M = 1, 2, \cdots$.

Gauge structure of GR

The ADM equations linearized about Minkowski:

$$\begin{aligned} \partial_t \delta \gamma_{ij} &= -2\delta K_{ij} + \partial_{(i}\delta\beta_{j)} \,, \\ \partial_t \delta K_{ij} &= -\partial_i \partial_j \delta \alpha - \frac{1}{2} \partial^k \partial_k \delta \gamma_{ij} - \frac{1}{2} \partial_i \partial_j \delta \gamma + \partial^k \partial_{(i}\delta \gamma_{j)k} \,. \end{aligned}$$

First order reduction $\mathbf{u} = (\delta \gamma_{ij}, \delta \alpha, \delta \beta_i, \delta K_{ij}, \partial_p \delta \gamma_{ij}, \partial_p \delta \alpha, \partial_p \delta \beta_i)^T$:

$$\partial_t \mathbf{u} \simeq \mathbf{P}^s \partial_s \mathbf{u}$$
, with $\mathbf{P}^s = \begin{pmatrix} \mathbf{P}_G & \mathbf{P}_{GC} & \mathbf{0} \\ \mathbf{0} & \mathbf{P}_C & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{P}_P \end{pmatrix}$

Pure gauge subsystem

Assume an arbitrary solution $g_{\mu\nu}$ of $R_{\mu\nu} = 0$.

- Infinitesimal coordinate transformation: $x^\mu
 ightarrow x^\mu + \xi^\mu$
- Perturbation to the solution: $\delta g_{\mu\nu} = -\mathcal{L}_{\xi} g_{\mu\nu}$
- 3 + 1 split: $\Theta \equiv n_{\mu}\xi^{\mu}$, $\psi^{i} \equiv -\gamma^{i}{}_{\mu}\xi^{\mu}$

Pure gauge subsystem for flat background:

$$\partial_t \Theta = \delta \alpha ,$$

$$\partial_t \psi_i = \delta \beta_i + \partial_i \Theta$$

Given α , β_i , the pure gauge subsystem is closed.

Khokhlov & Novikov 2001

Pure gauge subsystem inheritance

Linearized ADM system:

$$\partial_t \mathbf{u} \simeq \mathbf{P}^s \partial_s \mathbf{u} \,, \quad \mathbf{P}^s = \begin{pmatrix} \mathbf{P}_G & \mathbf{P}_{GC} & \mathbf{0} \\ \mathbf{0} & \mathbf{P}_C & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{P}_P \end{pmatrix}$$

Assume an algebraic choice for α , β_i . Pure gauge subsystem:

$$\partial_t \mathbf{v}_{gauge} \simeq \mathbf{P}^s_{gauge} \partial_s \mathbf{v}_{gauge}, \quad \mathbf{v}_{gauge} = (\Theta, \psi_i)^T$$

The inheritance: $\mathbf{P}_G = \mathbf{P}_{gauge}^s$

The result holds also for generic backgrounds & differential gauge choices.

Hilditch & Richter 2016

Algebraic determination of well-posedness

For the initial value problem (IVP) with constant coefficients:

$$\partial_t \mathbf{u} = \mathbf{B}^{\rho} \partial_{\rho} \mathbf{u} + \mathbf{S} \equiv \mathbf{B}^{\rho} \partial_{\rho} \mathbf{u} + \mathbf{B} \mathbf{u}$$

after Fourier transforming in space $(\partial_{\rho} \rightarrow i\omega_{\rho})$:

$$\mathbf{P}(i\omega) = i\omega_{p}\mathbf{B}^{p} + \mathbf{B} \quad \longrightarrow \quad \mathbf{u}(\cdot, t) = e^{\mathbf{P}(i\omega)t}\hat{f}(\omega).$$

 $|\mathsf{f}|e^{\mathsf{P}(i\omega)t}| \leq K e^{\alpha t}, \ K \geq 1 \ \& \ \alpha \in \mathbb{R} \ \text{for} \ t \geq 0, \ \text{the IVP is well posed in} \ L^2.$

$$||\mathbf{u}(\cdot,t)||_{L^2} = ||e^{\mathbf{P}(i\omega)t}\hat{f}(\omega)||_{L^2} \le K e^{\alpha t} ||\hat{f}||_{L^2} = K e^{\alpha t} ||f||_{L^2}$$

 $|\mathsf{f}|e^{\mathsf{P}(i\omega)t}| \leq K_1 e^{\alpha t} \left(1+|\omega|^q\right) \longrightarrow \text{well-posed in a lopsided norm (weakly)}.$

Eigenvalues of $P(i\omega)$

Gustafsson, Kreiss & Oliger "Time Dependent Problems and Difference Methods" Kreiss & Lorenz "Initial-Boundary Value Problems and the Navier-Stokes Equations"