Gauge structure of GR in Bondi-like coordinates

Thanasis Giannakopoulos

Instituto Superior Técnico, Lisbon

GR23 Beijing, July 5, 2022

PRD.102.064035 TG, D. Hilditch, M. Zilhão PRD.105.084055 TG, N. Bishop, D. Hilditch, D. Pollney, M. Zilhão

Bondi-like coordinates

- \bullet coordinates: $\textit{u},\textit{r},\theta,\phi$
- vector basis: ∂_u , ∂_r , ∂_θ , ∂_ϕ
- ∂_r is null & \perp to $\partial_ heta$ and ∂_ϕ

$$g^{\mu
u} = egin{pmatrix} 0 & g^{ur} & 0 & 0 \ g^{ur} & g^{rr} & g^{r heta} & g^{r\phi} \ 0 & g^{r heta} & g^{ heta \phi} & g^{ heta \phi} \ 0 & g^{r\phi} & g^{ heta \phi} & g^{ heta \phi} \end{pmatrix}$$

Vacuum Einstein's equations:

Evolution system: $R_{rr} = R_{r\theta} = R_{r\phi} = R_{\theta\theta} = R_{\theta\phi} = R_{\phi\phi} = 0$

Bondi, van der Burg, Sachs 1962, Winicour 2013, Cao, He 2013

Highly accurate gravitational waveform modeling

Cauchy-Characteristic Extraction (CCE) & Matching (CCM)

see e.g. Winicour's 2012 Living Review and references therein

Why gauge structure?

It is related to hyperbolicity & well-posedness.

Hyperbolicity

$$\mathcal{A}^{t}(x^{\mu}) \, \partial_{t} \mathbf{u} + \mathcal{A}^{p}(x^{\mu}) \, \partial_{p} \mathbf{u} + \mathcal{S}(\mathbf{u}, x^{\mu}) = 0 \, ,$$

where $\mathbf{u} = (u_1, u_2, \dots, u_q)^T$, is the state vector of the system and

$$oldsymbol{\mathcal{A}}^{\mu} = egin{pmatrix} a^{\mu}_{11} & \ldots & a^{\mu}_{1q} \ dots & \ddots & dots \ a^{\mu}_{q1} & \ldots & a^{\mu}_{qq} \end{pmatrix}$$

denotes the principal part matrices, with det(\mathcal{A}^t) \neq 0. Construct the

$$\mathbf{P}^{s}=\left(\boldsymbol{\mathcal{A}}^{t}\right)^{-1}\boldsymbol{\mathcal{A}}^{p}\,\boldsymbol{s}_{p}$$

where s^i is an arbitrary unit spatial vector.

Well-posedness

The PDE problem has a unique solution that depends continuously on the given data in a suitable norm.

• Strongly hyperbolic (SH) \rightarrow well-posed IVP in the L^2 norm

• Weakly hyperbolic (WH) \rightarrow **ill-posed** IVP in the L^2 norm

A numerical solution **can converge** to the continuum **only** for well-posed PDE problems.

Gauge structure of GR

The ADM equations linearized about Minkowski:

$$\begin{aligned} \partial_t \delta \gamma_{ij} &= -2\delta \mathcal{K}_{ij} + \partial_{(i} \delta \beta_{j)} ,\\ \partial_t \delta \mathcal{K}_{ij} &= -\partial_i \partial_j \delta \alpha - \frac{1}{2} \partial^k \partial_k \delta \gamma_{ij} - \frac{1}{2} \partial_i \partial_j \delta \gamma + \partial^k \partial_{(i} \delta \gamma_{j)k} . \end{aligned}$$

First order reduction $\mathbf{u} = (\delta \gamma_{ij}, \delta \alpha, \delta \beta_i, \delta K_{ij}, \partial_p \delta \gamma_{ij}, \partial_p \delta \alpha, \partial_p \delta \beta_i)^T$:

$$\partial_t \mathbf{u} \simeq \mathbf{P}^s \partial_s \mathbf{u}$$
, with $\mathbf{P}^s = \begin{pmatrix} \mathbf{P}_G & \mathbf{P}_{GC} & \mathbf{0} \\ \mathbf{0} & \mathbf{P}_C & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{P}_P \end{pmatrix}$

The choice of α , β_i dictates the structure of $\mathbf{P}_{\mathbf{G}}$.

Hilditch, Richter 2016; Khokhlov, Novikov 2001

Gauge structure of GR in Bondi-like coordinates

Non-diagonalizable \mathbf{P}_{G} along the θ, ϕ directions¹.

$$g^{u\theta}=g^{u\phi}=0$$

Mapping between Bondi-like and ADM equations.

GR formulation with up to 2nd order metric derivatives:

- In any Bondi-like gauge the PDE system is only WH.
- This CIBVP is ill-posed in the L^2 norm.
- This CIBVP may be weakly well-posed in a different norm^{2,3}.

¹TG, Bishop, Hilditch, Pollney, Zilhão 2022

²TG, Hilditch, Zilhão 2020

³Rácz 2013; Cabet, Chruściel, Wafo 2014; Hilditch, Kroon, Peng 2019; Ripley 2020

CCE & CCM

Cauchy: SH PDE, well-posed in ||u||_{L²} Characteristic: WH F

• Characteristic: WH PDE, well-posed in $||\mathbf{u}||_q$

CCE & CCM

- Cauchy: SH PDE, well-posed in $||\mathbf{u}||_{L^2}$
- Characteristic: WH PDE, well-posed in $||\mathbf{u}||_q$