## Gauge structure of GR in Bondi-like coordinates

Thanasis Giannakopoulos

Instituto Superior Técnico, Lisbon
GR23 Beijing, July 5, 2022


PRD.102.064035 TG, D. Hilditch, M. Zilhão PRD.105.084055 TG, N. Bishop, D. Hilditch, D. Pollney, M. Zilhão

## Bondi-like coordinates



- coordinates: $u, r, \theta, \phi$
- vector basis: $\partial_{u}, \partial_{r}, \partial_{\theta}, \partial_{\phi}$
- $\partial_{r}$ is null $\& \perp$ to $\partial_{\theta}$ and $\partial_{\phi}$

$$
g^{\mu \nu}=\left(\begin{array}{cccc}
0 & g^{u r} & 0 & 0 \\
g^{u r} & g^{r r} & g^{r \theta} & g^{r \phi} \\
0 & g^{r \theta} & g^{\theta \theta} & g^{\theta \phi} \\
0 & g^{r \phi} & g^{\theta \phi} & g^{\phi \phi}
\end{array}\right)
$$

Vacuum Einstein's equations:
Evolution system: $R_{r r}=R_{r \theta}=R_{r \phi}=R_{\theta \theta}=R_{\theta \phi}=R_{\phi \phi}=0$

Highly accurate gravitational waveform modeling


Cauchy-Characteristic Extraction (CCE) \& Matching (CCM)

Why gauge structure?

It is related to hyperbolicity \& well-posedness.

## Hyperbolicity

$$
\mathcal{A}^{t}\left(x^{\mu}\right) \partial_{t} \mathbf{u}+\mathcal{A}^{p}\left(x^{\mu}\right) \partial_{\rho} \mathbf{u}+\mathcal{S}\left(\mathbf{u}, x^{\mu}\right)=0,
$$

where $\mathbf{u}=\left(u_{1}, u_{2}, \ldots, u_{q}\right)^{T}$, is the state vector of the system and

$$
\mathcal{A}^{\mu}=\left(\begin{array}{ccc}
a_{11}^{\mu} & \ldots & a_{1 q}^{\mu} \\
\vdots & \ddots & \vdots \\
a_{q 1}^{\mu} & \ldots & a_{q q}^{\mu}
\end{array}\right)
$$

denotes the principal part matrices, with $\operatorname{det}\left(\mathcal{A}^{t}\right) \neq 0$. Construct the

$$
\mathbf{P}^{s}=\left(\mathcal{A}^{t}\right)^{-1} \mathcal{A}^{p} s_{p}
$$

where $s^{i}$ is an arbitrary unit spatial vector.

## Well-posedness

The PDE problem has a unique solution that depends continuously on the given data in a suitable norm.

- Strongly hyperbolic (SH) $\rightarrow$ well-posed IVP in the $L^{2}$ norm
- Weakly hyperbolic (WH) $\rightarrow$ ill-posed IVP in the $L^{2}$ norm

A numerical solution can converge to the continuum only for well-posed PDE problems.

## Gauge structure of GR

The ADM equations linearized about Minkowski:

$$
\begin{aligned}
\partial_{t} \delta \gamma_{i j} & =-2 \delta K_{i j}+\partial_{(i} \delta \beta_{j)} \\
\partial_{t} \delta K_{i j} & =-\partial_{i} \partial_{j} \delta \alpha-\frac{1}{2} \partial^{k} \partial_{k} \delta \gamma_{i j}-\frac{1}{2} \partial_{i} \partial_{j} \delta \gamma+\partial^{k} \partial_{(i} \delta \gamma_{j) k}
\end{aligned}
$$

First order reduction $\mathbf{u}=\left(\delta \gamma_{i j}, \delta \alpha, \delta \beta_{i}, \delta K_{i j}, \partial_{p} \delta \gamma_{i j}, \partial_{p} \delta \alpha, \partial_{p} \delta \beta_{i}\right)^{T}$ :

$$
\partial_{t} \mathbf{u} \simeq \mathbf{P}^{s} \partial_{s} \mathbf{u}, \quad \text { with } \quad \mathbf{P}^{s}=\left(\begin{array}{ccc}
\left.\begin{array}{|ccc}
\mathbf{P}_{G} & \mathbf{P}_{G C} & 0 \\
0 & \mathbf{P}_{C} & 0 \\
0 & 0 & \mathbf{P}_{P}
\end{array}\right) . . . . . ~
\end{array}\right.
$$

The choice of $\alpha, \beta_{i}$ dictates the structure of $\mathbf{P}_{G}$.

## Gauge structure of GR in Bondi-like coordinates

Non-diagonalizable $\mathbf{P}_{G}$ along the $\theta, \phi$ directions ${ }^{1}$.

$$
g^{u \theta}=g^{u \phi}=0
$$

Mapping between Bondi-like and ADM equations.

GR formulation with up to 2nd order metric derivatives:

- In any Bondi-like gauge the PDE system is only WH.
- This CIBVP is ill-posed in the $L^{2}$ norm.
- This CIBVP may be weakly well-posed in a different norm ${ }^{2,3}$.

[^0]
## CCE \& CCM



- Cauchy: SH PDE, well-posed in $\|\mathbf{u}\|_{L^{2}}$
- Characteristic: WH PDE, well-posed in $\|\mathbf{u}\|_{q}$


## CCE \& CCM



- Cauchy: SH PDE, well-posed in $\|\mathbf{u}\|_{L^{2}}$
- Characteristic: WH PDE, well-posed in $\|\mathbf{u}\|_{q}$


## Thank you!


[^0]:    ${ }^{1}$ TG, Bishop, Hilditch, Pollney, Zilhão 2022
    ${ }^{2}$ TG, Hilditch, Zilhão 2020
    ${ }^{3}$ Rácz 2013; Cabet, Chruściel, Wafo 2014; Hilditch, Kroon, Peng 2019; Ripley 2020

