Numerical Relativity: the numerics
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Today

Physical problem

Formulation

PDE analysis

Numerical methods (method of lines, finite differences)
Implementation (hyperbolic toy models in Julia)

Evaluate errors (convergence tests)

No o s b=

Physical interpretation

References:

- Gustafsson, Kreiss, Oliger: Time Dependent Problems and Difference
Methods

- Kreiss, Lorenz: Initial-Boundary Value Problems and the Navier-Stokes
Equations

- Sarbach, Tiglio: Continuum and Discrete Initial-Boundary Value

Problems and Einstein’s Field Equations
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From continuum to discrete

Goal: To obtain a numerical approximation that converges to the
continuum solution with increasing resolution.

Choose a numerical scheme that is consistent and stable:

- consistency: the numerical scheme approximates the correct PDE
problem at the continuum limit

- stability: the solution is controlled by the given data

Convergence: the difference between the numerical and the
continuum solution tends to zero with increasing resolution
- the convergence rate is related to the numerical scheme

In applications, we typically check numerical convergence.
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Semi-discretization: the method of lines

Example PDE: O:u(t,x) = Ocu(t,x), t>0, xe€]0,1]

spatial (here uniform) grid with spacing h = % such

that x = (xo0, x1, %2, ..., xn) = (0, h,2h,..., Nh)

Continuum function u(t, x) — wu;(t) grid function, at each x;
Ox — Dy, with e.g. Dyu; = “H50=L

The original example PDE — a set of coupled ODEs:
Oeui(t) = [uita(t) — uim1 ()] 3=, >0, xo < x; < Xy

special care for xp and xy (e.g. different choice of Dy)

we can use ODE integrators along the line of each x;
- a commonly used ODE integrator: 4th order Runge-Kutta (RK4)



Finite difference (FD) operators

Finite difference operators can be derived via Taylor expansions

2nd order accurate:

e forward: Dyu; = %ﬁ’“_%’ + O(h?)
e backward: Dyu; = W + O(h?)

- truncation error O(h?) matched:

o centered: Dyu; = “*1-0=L 4 O(h?)
e forward: Dyu; = ”"*3_4“”22;:7”"“_4“’ + O(h?)
o backward: Dyu; = #=Tu=ttduia—tizs 4 o(p2)

Forward and backward FDs can be used to treat the boundaries.

see e.g. Chapter 1 of Pretorius’ PhD Thesis
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More on numerical methods

Other discretization options:

@ Spectral methods

Numerical boundary conditions:

@ Ghost points

Numerical stability:
@ Use artificial dissipation to damp high frequency noise

@ Tune the timestep At such that the ODE integrator is stable
- see Courant-Friedrichs-Lewy (CFL) condition
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Numerical convergence (error evaluation)

Assume a convergent numerical scheme (e.g. finite differences) of
accuracy n. Then f — f, = O(h") is the numerical error, where:

@ continuum solution f

@ numerical approximation f; at resolution h

Take the coarse, medium and fine grid spacings h¢, hn,, hs. Construct the
convergence factor:
hg —hy,  fe—fn

@ h,’%—h?_fm—ff

Example:
@ hp=hc/2, hf =h/dandn=2— Q=14

@ monitor fo — fp,, fm — fr and compare with the expected Q
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Example: toy models
The PDE problem:

0t = 0 +| 0|, b = Db,

t €[0,3], x €]0,1] with periodic boundary conditions,

Initial data: ¢(0,x) = ¢(x), ¥(0,x) = ()
@ Oxi — strongly hyperbolic system — well-posed IVP in the L?-norm
e 0,1 — weakly hyperbolic system — ill-posed IVP in the L?-norm

lullez = [ (62 +02) e, u=(6.0)

Implementation:
e O,f — D, f; with 2nd order accurate FD
o ODE integrator is RK4
o timestep At = 0.25h, where h is the spatial grid spacing
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