Numerical Relativity: the numerics

Thanasis Giannakopoulos

January 20, 2023

University of
Nottingham
UK CHINA | MALAYSIA

Today

1. Physical problem
2. Formulation
3. PDE analysis
4. Numerical methods (method of lines, finite differences)
5. Implementation (hyperbolic toy models in Julia)
6. Evaluate errors (convergence tests)
7. Physical interpretation

References:

- Gustafsson, Kreiss, Oliger: Time Dependent Problems and Difference Methods
- Kreiss, Lorenz: Initial-Boundary Value Problems and the Navier-Stokes Equations
- Sarbach, Tiglio: Continuum and Discrete Initial-Boundary Value

Problems and Einstein's Field Equations

From continuum to discrete

Goal: To obtain a numerical approximation that converges to the continuum solution with increasing resolution.

- Choose a numerical scheme that is consistent and stable:
- consistency: the numerical scheme approximates the correct PDE problem at the continuum limit
- stability: the solution is controlled by the given data
- Convergence: the difference between the numerical and the continuum solution tends to zero with increasing resolution - the convergence rate is related to the numerical scheme

In applications, we typically check numerical convergence.

Semi-discretization: the method of lines

$$
\text { Example PDE: } \partial_{t} u(t, x)=\partial_{x} u(t, x), \quad t \geq 0, \quad x \in[0,1]
$$

- spatial (here uniform) grid with spacing $h=\frac{1}{N}$, such that $x=\left(x_{0}, x_{1}, x_{2}, \ldots, x_{N}\right)=(0, h, 2 h, \ldots, N h)$
- Continuum function $u(t, x) \rightarrow u_{i}(t)$ grid function, at each x_{i}
- $\partial_{x} \rightarrow D_{x}$, with e.g. $D_{x} u_{i}=\frac{u_{i+1}-u_{i-1}}{2 h}$

The original example PDE \rightarrow a set of coupled ODEs:

$$
\partial_{t} u_{i}(t)=\left[u_{i+1}(t)-u_{i-1}(t)\right] \frac{1}{2 h}, \quad t \geq 0, \quad x_{0}<x_{i}<x_{N}
$$

- special care for x_{0} and x_{N} (e.g. different choice of D_{x})
- we can use ODE integrators along the line of each x_{i} - a commonly used ODE integrator: 4th order Runge-Kutta (RK4)

Finite difference (FD) operators

Finite difference operators can be derived via Taylor expansions ${ }^{1}$.
2nd order accurate:

- forward: $D_{x} u_{i}=\frac{-u_{i+2}+4 u_{i+1}-3 u_{i}}{2 h}+O\left(h^{2}\right)$
- backward: $D_{x} u_{i}=\frac{3 u_{i}-4 u_{i-1}+u_{i-2}}{2 h}+O\left(h^{2}\right)$
- truncation error $O\left(h^{2}\right)$ matched:
- centered: $D_{x} u_{i}=\frac{u_{i+1}-u_{i-1}}{2 h}+O\left(h^{2}\right)$
- forward: $D_{x} u_{i}=\frac{u_{i+3}-4 u_{i+2}+7 u_{i+1}-4 u_{i}}{2 h}+O\left(h^{2}\right)$
- backward: $D_{x} u_{i}=\frac{4 u_{i}-7 u_{i-1}+4 u_{i-2}-u_{i-3}}{2 h}+O\left(h^{2}\right)$

Forward and backward FDs can be used to treat the boundaries.

[^0]
More on numerical methods

Other discretization options:

- Spectral methods

Numerical boundary conditions:

- Ghost points

Numerical stability:

- Use artificial dissipation to damp high frequency noise
- Tune the timestep Δt such that the ODE integrator is stable - see Courant-Friedrichs-Lewy (CFL) condition

Numerical convergence (error evaluation)

Assume a convergent numerical scheme (e.g. finite differences) of accuracy n. Then $f-f_{h}=O\left(h^{n}\right)$ is the numerical error, where:

- continuum solution f
- numerical approximation f_{h} at resolution h

Take the coarse, medium and fine grid spacings h_{c}, h_{m}, h_{f}. Construct the convergence factor:

$$
Q \equiv \frac{h_{c}^{n}-h_{m}^{n}}{h_{m}^{n}-h_{f}^{n}}=\frac{f_{c}-f_{m}}{f_{m}-f_{f}}
$$

Example:

- $h_{m}=h_{c} / 2, h_{f}=h_{c} / 4$ and $n=2 \rightarrow Q=4$
- monitor $f_{c}-f_{m}, f_{m}-f_{f}$ and compare with the expected Q

Example: toy models

The PDE problem:
$\partial_{t} \phi=\partial_{x} \phi+\partial_{x} \psi, \quad \partial_{t} \psi=\partial_{x} \psi$,
$t \in[0,3], \quad x \in[0,1]$ with periodic boundary conditions,
Initial data: $\phi(0, x)=\hat{\phi}(x), \quad \psi(0, x)=\hat{\psi}(x)$

- \rightarrow strongly hyperbolic system \rightarrow well-posed IVP in the L^{2}-norm
- $\partial_{x} \psi \rightarrow$ weakly hyperbolic system \rightarrow ill-posed IVP in the L^{2}-norm

$$
\|\mathbf{u}\|_{L^{2}}=\int\left(\phi^{2}+\psi^{2}\right) d x, \quad \mathbf{u}=(\phi, \psi)^{T}
$$

Implementation:

- $\partial_{x} f \rightarrow D_{x} f_{i}$ with 2 nd order accurate FD
- ODE integrator is RK4
- timestep $\Delta t=0.25 h$, where h is the spatial grid spacing

[^0]: ${ }^{1}$ see e.g. Chapter 1 of Pretorius' PhD Thesis

