
Numerical Relativity: the numerics

Thanasis Giannakopoulos

January 20, 2023



Today
1. Physical problem
2. Formulation
3. PDE analysis
4. Numerical methods (method of lines, finite differences)
5. Implementation (hyperbolic toy models in Julia)
6. Evaluate errors (convergence tests)
7. Physical interpretation

References:
- Gustafsson, Kreiss, Oliger: Time Dependent Problems and Difference
Methods
- Kreiss, Lorenz: Initial-Boundary Value Problems and the Navier-Stokes
Equations
- Sarbach, Tiglio: Continuum and Discrete Initial-Boundary Value
Problems and Einstein’s Field Equations
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From continuum to discrete

Goal: To obtain a numerical approximation that converges to the
continuum solution with increasing resolution.

Choose a numerical scheme that is consistent and stable:
- consistency: the numerical scheme approximates the correct PDE
problem at the continuum limit
- stability: the solution is controlled by the given data

Convergence: the difference between the numerical and the
continuum solution tends to zero with increasing resolution
- the convergence rate is related to the numerical scheme

In applications, we typically check numerical convergence.
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Semi-discretization: the method of lines

Example PDE: ∂tu(t, x) = ∂xu(t, x) , t ≥ 0 , x ∈ [0, 1]

spatial (here uniform) grid with spacing h = 1
N , such

that x = (x0, x1, x2, . . . , xN) = (0, h, 2h, . . . ,Nh)
Continuum function u(t, x)→ ui (t) grid function, at each xi

∂x → Dx , with e.g. Dxui = ui+1−ui−1
2h

The original example PDE → a set of coupled ODEs:
∂tui (t) = [ui+1(t)− ui−1(t)] 1

2h , t ≥ 0 , x0 < xi < xN

special care for x0 and xN (e.g. different choice of Dx )
we can use ODE integrators along the line of each xi
- a commonly used ODE integrator: 4th order Runge-Kutta (RK4)
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Finite difference (FD) operators

Finite difference operators can be derived via Taylor expansions1.

2nd order accurate:
forward: Dxui = −ui+2+4ui+1−3ui

2h + O(h2)
backward: Dxui = 3ui −4ui−1+ui−2

2h + O(h2)

- truncation error O(h2) matched:
centered: Dxui = ui+1−ui−1

2h + O(h2)
forward: Dxui = ui+3−4ui+2+7ui+1−4ui

2h + O(h2)
backward: Dxui = 4ui −7ui−1+4ui−2−ui−3

2h + O(h2)

Forward and backward FDs can be used to treat the boundaries.

1see e.g. Chapter 1 of Pretorius’ PhD Thesis 4 / 7



More on numerical methods

Other discretization options:
Spectral methods

Numerical boundary conditions:
Ghost points

Numerical stability:
Use artificial dissipation to damp high frequency noise
Tune the timestep ∆t such that the ODE integrator is stable
- see Courant-Friedrichs-Lewy (CFL) condition
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Numerical convergence (error evaluation)

Assume a convergent numerical scheme (e.g. finite differences) of
accuracy n. Then f − fh = O(hn) is the numerical error, where:

continuum solution f
numerical approximation fh at resolution h

Take the coarse, medium and fine grid spacings hc , hm, hf . Construct the
convergence factor:

Q ≡ hn
c − hn

m
hn

m − hn
f

= fc − fm
fm − ff

Example:
hm = hc/2, hf = hc/4 and n = 2 → Q = 4
monitor fc − fm, fm − ff and compare with the expected Q
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Example: toy models
The PDE problem:

∂tφ = ∂xφ+ ∂xψ , ∂tψ = ∂xψ ,

t ∈ [0, 3] , x ∈ [0, 1] with periodic boundary conditions ,
Initial data: φ(0, x) = φ̂(x) , ψ(0, x) = ψ̂(x)

��
�HHH∂xψ → strongly hyperbolic system → well-posed IVP in the L2-norm

∂xψ → weakly hyperbolic system → ill-posed IVP in the L2-norm

||u||L2 =
∫ (

φ2 + ψ2
)

dx , u = (φ, ψ)T

Implementation:
∂x f → Dx fi with 2nd order accurate FD
ODE integrator is RK4
timestep ∆t = 0.25h, where h is the spatial grid spacing
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