Numerical Relativity: more formulations

Thanasis Giannakopoulos

January 13, 2023

Lecture 1: A recipe for NR

- 1. Physical problem
- 2. Formulation
- 3. PDE analysis
- 4. Numerical methods
- 5. Implementation
- 6. Evaluate errors
- 7. Physical interpretation

Lecture 2: 3+1 formalism

- 1. 3+1 spacetime foliation
- 2. ADM system
- 3. BSSN formalism

Today

- 1. Generalized Harmonic Gauge (GHG) formulation
- 2. Characteristic formulations

GHG formulation

Used in the first successful simulation of full BBH merger (Pretorius 2005): PRL 95, 121101 & CQG 22 425-452

Mathematical relativity:

Choquet-Bruhat 1962, The Cauchy problem

Numerics:

Szilágyi, Schmidt, Winicour 2002, PRD 65, 064015 Garfinkle 2002, PRD 65, 044029 Lindblom et al 2006, CQG 23 S447 BAMPS, SpEC & SpECTRE codes

The generalized harmonic evolution system

The vacuum EFE:

$$R_{ab} = -\frac{1}{2}g^{cd}\partial_c\partial_d g_{ab} + \boxed{\nabla_{(a}\Gamma_{b)}} + Q_{ab}(g,\partial g) = 0,$$

$$\Gamma_a = g_{ad}g^{bc}\Gamma^d_{\ bc} = \frac{1}{2}g^{bc}\left(\partial_b g_{ac} + \partial_c g_{ab} - \partial_a g_{bc}\right).$$

Generalized harmonic coordinate condition:

$$-\Gamma_a(g,\partial g) = g_{ab} \nabla^c \nabla_c x^b = H_a(x,g).$$

The vacuum EFE in the generalized harmonic formulation:

$$-\frac{1}{2}g^{cd}\partial_c\partial_d g_{ab} - \nabla_{(a}H_{b)} + Q_{ab}(g,\partial g) = 0,$$

is manifestly symmetric hyperbolic.

Choosing GH coordinates

Specifying the GH coordinates means choosing $H_a(x, g)$:

- Standard harmonic choice: $H_a = 0$
- Generalized harmonic (algebraic): H_a = f_a(x, g)
 e.g. Lindblom et al 2006
- Promote H_a to independent variables (evolution eqs.): $\mathcal{L}_a H_a = 0$ e.g. Pretorius 2005

How to choose the coordinates? The GH coordinate condition in 3+1 language:

$$\partial_t \alpha - \beta^k \partial_k \alpha = -\alpha \left(H_t - \beta^i H_i + \alpha K \right) ,$$

$$\partial_t \beta^i - \beta^k \partial_k \beta^i = \alpha \gamma^{ij} \left[\alpha \left(H_j + \gamma^{kl} \Gamma_{jkl} \right) - \partial_j \alpha \right]$$

Constraints and reductions

$$0 = R_{ab} - \nabla_{(a}C_{b)} = -\frac{1}{2}g^{cd}\partial_{c}\partial_{d}g_{ab} - \nabla_{(a}H_{b)} + Q_{ab}(g,\partial g)$$

The GH coordinate constraint: $C_{a} \equiv H_{a} + \Gamma_{a} = 0$

- For ID that satisfy C_a = ∂_tC_a = 0 or C_a = M_a = 0, where M_a = {H, M_i}, the solution satisfies the GH constraint.
 Lindblom et al. 2006
- Constraint violation: $0 = R_{ab} \nabla_{(a}C_{b)} + \text{constraint damping terms}$
 - Pretorius used a suggestion by Gundlach et al. 2005

The reduction choice affects the numerical implementation:

- Garfinkle 2002: 1st order in time, 2nd in space
- Pretorius 2005: 2nd order in time & space
- Lindblom et al. 2006: 1st order in time & space

Code	Open Source	Catalog	Formulation	Hydro	Beyond GR
AMSS-NCKU [43-46]	Yes	No	BSSN/Z4c	No	Yes
BAM [47-49]	No	[18]	BSSN/Z4c	Yes	No
BAMPS [50, 51]	No	No	GHG	Yes	No
COFFEE[52, 53]	Yes	No	GCFE	No	Yes
Dendro-GR [54-56]	Yes	No	BSSN/CCZ4	No	Yes
Einstein Toolkit [57, 58]	Yes	No	BSSN/Z4c	Yes	Yes
*Canuda [59-62]	Yes	No	BSSN	No	Yes
*IllinoisGRMHD [63]	Yes	No	BSSN	Yes	No
*LazEv [37, 64]	No	[65-68]	BSSN+CCZ4	No	No
*Lean [69, 70]	Partially	No	BSSN	No	Yes
*MAYA [71]	No	[71]	BSSN	No	Yes
*NRPy+ [72]	Yes	No	BSSN	Yes	No
*SphericalNR [73, 74]	No	No	spherical BSSN	Yes	No
*THC [75-77]	Yes	[18]	BSSN/Z4c	Yes	No
ExaHyPE [78]	Yes	No	CCZ4	Yes	No
FIL[79]	No	No	BSSN/Z4c/CCZ4	Yes	No
FUKA [80, 81]	Yes	No	XCTS	Yes	No
GR-Athena++ [82]	Yes	No	Z4c	Yes	No
GRChombo [83-85]	Yes	No	BSSN+CCZ4	No	Yes
HAD [86-88]	No	No	CCZ4	Yes	Yes
Illinois GRMHD [89, 90]	No	Yes	BSSN	Yes	No
MANGA/NRPy+ [91]	Partially	No	BSSN	Yes	No
MHDuet [92, 93]	No	No	CCZ4	Yes	Yes
SACRA-MPI [94]	No		BSSN+Z4c	Yes	No
SpEC [95, 96]	No	[96, 97]	GHG	Yes	Yes
SpECTRE [98, 99]	Yes	No	GHG	Yes	No
SPHINCS_BSSN [100]		No	BSSN	SPH	No

Table 1: List of numerical relativity codes. We indicate if a code is open-source, if it has been used to produce gravitational waveform catalogs, the formulation of Einstein's equation used (GHG: generalized harmonic, BSSN: Baumgarte-Shapiro-Shibata-Nakamura, CCZ4/Z4c variants of the Z4 formulation, GCFE: generalised conformal field equations), if a code implements general relativistic hydrodynamics, and if it is capable to simulate compact binaries beyond general relativity. An asterisk indicates codes that are either (partially) based on the open-source Einstein Toolkit or are co-funded by its grant. Credit: Deidre Shoemaker; taken from Ref. [26].

Foucart, Laguna, Lovelace, Radice, Witek: Snowmass2021 Cosmic Frontier White Paper: Numerical relativity for next-generation gravitational-wave probes of fundamental physics

Characteristic formulations

- First stable numerical evolutions of a single BH BBHGC Alliance 1998
- CCE & CCM for highly accurate GW modeling

SXS collaboration

 $\dot{i}0$

- Gravitational collapse Garfinkle 1994, Crespo et al. 2019, Gundlach et al. 2022
- Holography & strongly coupled matter

see e.g Chesler & Yaffe: arXiv:1309.1439,

Bondi-like coordinates

- coordinates: u, r, θ, ϕ
- ∂_r is null & \perp to ∂_{θ} and ∂_{ϕ}

$$\mathbf{g}^{\mu
u} = egin{pmatrix} 0 & g^{ur} & 0 & 0 \ g^{ur} & g^{rr} & g^{r heta} & g^{r\phi} \ 0 & g^{r heta} & g^{ heta heta} & g^{ heta \phi} \ 0 & g^{r\phi} & g^{ heta \phi} & g^{ heta \phi} \end{pmatrix}$$

Vacuum EFE:

Evolution system: $R_{rr} = R_{r\theta} = R_{r\phi} = R_{\theta\theta} = R_{\theta\phi} = R_{\phi\phi} = 0$

Constraints on \mathcal{T} : $R_{uu} = R_{u\theta} = R_{u\phi} = 0$ & trivial eq. $R_{ur} = 0$

Determinant condition: $g_{\theta\theta}g_{\phi\phi} - g_{\theta\phi}^2 = \hat{R}^4 \sin^2 \theta$ Bondi-Sachs: $\hat{R} = r$, double null: $g^{rr} = 0$, affine null: $g^{rr} = \pm 1$

A characteristic PDE system

$\mathcal{A}^t \partial_t \mathbf{u} + \mathcal{A}^p \partial_p \mathbf{u} + \mathcal{S} = 0 \,,$

with state vector $\mathbf{u} = (u_1, \dots, u_q)^T$, coord. $x^{\mu} = (t, x^p)$ and "time" t

•
$$\operatorname{rank}(\mathcal{A}^t) = m < q$$
 and $\det(\mathcal{A}^t) = 0$

- m q (intrinsic) equations with no ∂_t and m with ∂_t
- Remember: for hyperbolicity we need the principal symbol $\mathbf{P}^s = (\mathcal{A}^t)^{-1} \mathcal{A}^p s_p$
- Use an auxiliary Cauchy-type system to study the hyperbolicity of a characteristic one

Example: Bondi-Sachs in axisymmetry

$$ds^{2} = \left(\frac{V}{r}e^{2\beta} - U^{2}r^{2}e^{2\gamma}\right) du^{2} + 2e^{2\beta}du dr$$
$$+ 2Ur^{2}e^{2\gamma} du d\theta - r^{2} \left(e^{2\gamma} d\theta^{2} + e^{-2\gamma}\sin^{2}\theta d\phi^{2}\right)$$

• Initial data: γ on \mathcal{N}_0 , boundary data: β, U, V on \mathcal{T}

Nested structure of intrinsic equations

Well-posedness of the Bondi-like CI(B)VP

- Existence and uniqueness of solutions: Frittelli & Lehner 1999, Gomez & Frittelli 2003
- Continuous dependence of the solution on the given data considering a subsystem: Frittelli 2005
- Weak hyperbolicity of the axisymmetric Bondi-Sachs system: TG, Hilditch, Zilhão 2020
- Weak hyperbolicity of GR in Bondi-like coordinates: TG, Bishop, Hilditch, Pollney, Zilhão 2021
 - $g^{u \theta} = g^{u \phi} = 0 \longrightarrow {f P}^{ heta} \, , {f P}^{\phi}$ are non-diagonalizable

The Bondi-like CI(B)VP is ill-posed in the L^2 norm. Open question: Are there alternative norms?

Today

- Spacelike formulations (GHG)
- Characteristic formulations

<u>Next</u>

Lecture 4 (20 January, 2023)

- Numerical methods (method of lines, finite differences)
- Toy models: implementation and convergence

Today

- Spacelike formulations (GHG)
- Characteristic formulations

<u>Next</u>

Lecture 4 (20 January, 2023)

- Numerical methods (method of lines, finite differences)
- Toy models: implementation and convergence

Thank you!