Numerical Relativity: an overview

Thanasis Giannakopoulos

November 18, 2022

University of
Nottingham
UK \mid CHINA \mid MALAYSIA

1. Some history
2. A recipe for Numerical Relativity
3. Current and future challenges
4. A plan for the next lectures

The Einstein Field Equations (EFE) in geometric units $(G=c=1)$:

$$
R_{a b}-\frac{1}{2} g_{a b} R+\Lambda g_{a b}=8 \pi T_{a b}
$$

How to solve the EFE?

- Exact solutions (e.g. time independence, high symmetry)
- Perturbative solutions (e.g. close to exact solutions, non-linear terms not important)
- Numerical methods (e.g. highly dynamical fields, strong non-linearities, lack of symmetry)

Numerical Relativity (NR):
The use of numerical methods to find approximate solutions to the EFE, which converge to the continuum solution with more computational resources.

Some history

- Late 1950s: Arnowitt-Deser-Misner (ADM) 3+1 decomposition
- 1960s: first numerics by Hahn and Lindquist
- 1970s: axisymmetric numerics by Čadež, Smarr, and Eppley (PhD students of DeWitt); York's 3+1 decomposition
- 1990s: binary black hole grand challenge project ($3+1$ codes, single black holes, mesh refinement, CACTUS), critical phenomena (Choptuik), stable characteristic codes
- 2000s: compact binaries -neutron star merger in BSSN ${ }^{1}$ formulation (2003-2004) ${ }^{2}$
-BBH merger (Pretorius using GHG, 2005),
-more BBH mergers with different methods (Brownsville/Rochester and NASA Goddard, 2006)

[^0]
A recipe* for NR

Can we break down a successful NR simulation into its ingredients?

1. Physical problem
2. Formulation
3. Analysis of partial differential equations (PDEs)
4. Numerical methods
5. Implementation
6. Evaluate errors
7. Physical interpretation

1. Physical problem

What do we want to study?

- Principle: gravitational collapse, black string instabilities
- GW astronomy: binaries of compact objects
- Astrophysics: accretion disks, core collapse
- Holography: heavy ion collisions, phase transitions

It is important to understand the limits of the problem described by other methods to cross-check, e.g. quasinormal modes of BH resulting from a binary merger, NR vs BH perturbations.

2. Formulation

Write the EFE in a way that can be used for numerical simulations: there is great freedom in this.

Spacetime slicing: spacelike, null, hyperboloid Conformally compactified spacetime (CEFE)

2. Formulation: spacelike

More freedom:

- Free evolution
- Constrained evolution
- Constraint damping
- Evolved variables (e.g. ADM, BSSN)
- Gauge choice (e.g. maximal slicing, $1+\log$, harmonic)

3. PDE analysis

$$
R_{a b}-\frac{1}{2} g_{a b} R+\Lambda g_{a b}=8 \pi T_{a b}
$$

1. Choose a formulation
2. The PDE system we solve obtains a character (e.g. strongly hyperbolic, weakly hyperbolic)
3. Well-posedness of the PDE problem: there is a unique solution that depends continuously on the given data
4. If PDE problem is ill-posed GOTO 1 (e.g. change gauge)

3. PDE analysis

$$
R_{a b}-\frac{1}{2} g_{a b} R+\Lambda g_{a b}=8 \pi T_{a b}
$$

1. Choose a formulation
2. The PDE system we solve obtains a character (e.g. strongly hyperbolic, weakly hyperbolic)
3. Well-posedness of the PDE problem: there is a unique solution that depends continuously on the given data
4. If PDE problem is ill-posed GOTO 1 (e.g. change gauge)

Numerical Relativity (NR):
The use of numerical methods to find approximate solutions to the EFE, which converge to the continuum solution with more computational resources.

4. Numerical methods

- Method of lines
- Finite differencing
- Spectral methods
- Numerical boundary conditions
- High-resolution shock capturing
- Artificial dissipation
- Mesh refinement

Schematic example of a refined grid Suárez Fernández et. al: arXiv:2205.04379v1

5. Implementation

We need a code that implements the chosen numerical method.

- Is there relevant open source software?
(e.g. Einstein Toolkit, GRChombo, SpECTRE, NRPy+)
- If not, develop your own code (programming language, libraries, code design and modularity)
- Optimization (memory, speed, scalability and parallelization)
- Test, fix bugs, create documentation

6. Evaluate errors of the numerical simulation

Perform convergence tests: Solve the same PDE problem with increasing resolution, and inspect how the error behaves.

- Does the error converge to zero with increasing resolution?
- What is the convergence rate?
- If convergence is lost or the rate is not the expected one:
- revisit formulation, numerical methods, implementation
- increase resolution (maybe you need more computational resources)
- Compare against known solutions (e.g. exact, perturbative)

7. Physical interpretation of the results

We need to manipulate the data (visualization, postprocessing).

For example:

- Gravitational waveforms
- Event horizons
- Curvature invariants

NR waveform modeling GW150914 Abbott et al: arXiv:1602.03837v1

What's next?

- 2 body problem:
- more accurate gravitational waveforms (code efficiency and accuracy, formulation that include \mathcal{I}^{+})
- add features (black hole spin, environmental effects, neutrino transfer in neutron stars)
- Critical phenomena in gravitational collapse (fully 3D simulation)
- Cosmological scenarios (e.g. early universe phase transitions via holography)
- Go beyond GR (e.g. single compact objects, collapse, 2 body problem)

Plan

Lectures 2 and 3

- PDE analysis: hyperbolicity and well-posedness
- Spacelike formulations (ADM, BSSN, GHG)
- Characteristic formulations

Lecture 4

- Numerical methods (method of lines, finite differences)
- Toy models: implementation and convergence

Plan

Lectures 2 and 3

- PDE analysis: hyperbolicity and well-posedness
- Spacelike formulations (ADM, BSSN, GHG)
- Characteristic formulations

Lecture 4

- Numerical methods (method of lines, finite differences)
- Toy models: implementation and convergence

Thank you!

[^0]: See e.g. Sperhake 2015 for a review
 ${ }^{1}$ Baumgarte-Shapiro-Shibata-Nakamura (BSSN)
 ${ }^{2}$ Shibata, Taniguchi, Uryū; Marronetti, Duez, Shapiro, Baumgarte; Miller, Gressman, Suen

