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Recap

The Einstein Field Equations (EFE) in geometric units (G = ¢ = 1):

1
Rap — §gabR +Agap =81 Ty

Numerical Relativity (NR):
The use of numerical methods to find approximate solutions to the EFE,
which converge to the continuum solution with more computational

resources.
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Recap: A recipe for NR

Physical problem

Formulation

Analysis of partial differential equations (PDEs)
Numerical methods

Implementation

Evaluate errors

Physical interpretation
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Today

3+1 spacetime foliation

ADM system

Hyperbolicity and well-posedness
Free evolution

BSSN formalism
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3-+1 spacetime foliation

Goal: Solve the initial value problem (IVP) to get gap.

1
Ry — Egab‘lR + NGy =87Tap — Opu=APIuU+S

o lapse a: d7T = adt

@ projection: v?, = 6%, + n?nyp

@ Kap = —7aVenp = _%En’)’ab

e.g. take an arbitrary 4-vector V: adt]
Ve = 5ab\/b — ,yabvb _ nanbvb

4Rab: vcu YGab

Alcubierre: Introduction to 3+1 Numerical Relativity
Gourgoulhon: 3+1 Formalism and Bases of Numerical Relativity arXiv:gr-qc/0703035v1 4/14



3-+1 split the curvature

@ Gauss equation: total projection onto X

Ve 6V Y d * Retgh = Rabed + KacKbad — KadKbe

@ Codazzi-Mainardi equation: project 1 with n and 3 with ~

’Vea'yfb'ygcnd4Retfgd = DpKsc — D3Kpc

@ Ricci equation: project 2 with n and 2 with

1
'Yeanb'ygcnd 4Rebgd = LaKac + aDaDca + Kadec
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3-+1 adapted coordinates

coordinates x* = (t, x')

th = (1,

pH = (07

0)7
s’

nt=a(1,-4)7

Buv = (

—a? +
Bi

BB B
Vij

normal line coordinate line

) o

2
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3+1 split the EFE (with A = 0)

1 1
"R~ &R =81Top, Ry =8 (Tab ~ S8 T)

Decompose T,p: p = n?nb Tab, Jja= _nb'YcaTbca Sap = ’Yca’)/decd

Hamiltonian constraint (n projection): R + K2 — K, K2 = 167p

Momentum constraints (n,~y projection): DpK?, — D,K = 87},

Evolution equations (complete « projection):

LaKap = —a YD,Dpa+ Rap + KKap — 2K, Kpe — 8 [53[, — %’yab (S — p)}
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The ADM (or York) system

Use the 3 + 1 adapted coordinates:

Hamiltonian constraint: H = R + K? — K;;K¥ — 16mp =0

Momentum constraints: M; = DjKj,- —DiK—8mj; =0

Kij; evolution equations:

0:Kjj = LsK; — a ' D;Djac + Ry + KKy — 2K/ Kj,

1 «
=8 |5 = 5 (S —p)| = | 7 H

~jj evolution equations: 0yyj; = —2aKj; + L

Original goal: J;u = APO,u+S
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10 EFE — 6 evolution equations (0:Kjj = ...) + 4 constraints
u = (v;, Kij) T: hyperbolic PDE, with d;, 92, 0;, 12 evolved variables
Evolution scheme: free vs constraint evolution

Free evolution: solve H, Mj|;—o and evolve (v, Kjj)
- Bianchi identity — H, M; satisfied for t > 0 if at t = 0 [Frittelli '97]

- Constraint violation: i) purely numerical ii) constraint violating BC
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Hyperbolicity

A (x") Opu + AP (x*) Opu + S(u, x*) =0,

where u = (uy, Uy, ..., uq)T, is the state vector of the system and
" I
all ... alq
A’LL — . .
I w
dq1 dqq

denotes the principal part matrices, with det(.A") # 0. Construct the
P° = (At)_1 APs,

where s’ is an arbitrary unit spatial vector.
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Well-posedness

The PDE problem has a unique solution that depends continuously on the
given data in a suitable norm.

e Strongly hyperbolic (SH) — well-posed IVP in the L2 norm

o Weakly hyperbolic (WH) — ill-posed IVP in the L? norm

A numerical solution can converge to the continuum only for well-posed
PDE problems.
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Free evolution

There is some freedom: i) addition of H, M;, i) choose a, 3

HER+K2—K,'J'KU:0, MJEDJKJ;—D;KZO

Bt'y,-j = —2aK,-j + C/w,-j
0:Kjj = LKy — o 1D;Dja + Ry + KKjj — 2Ki' Ky +

@ slicing () and coordinate evolution (3): algebraic, differential
- hyperbolicity; physical problem; numerical cost

@ geodesic slicing: « = 1, 8 = 0 (WH ADM system)
- Hahn and Lindquist 1964

o 1+log slicing: (0 — Lg)a = o*Kf(a);
- singularity avoidance properties; many BBH merger simulations
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BSSN(OK)*

Widely used in many modern NR codes; good stability properties

Variables:

e conformal 3-metric: 7; = ¥~ *y;
- nice for initial data and GWs

@ traceless part of extr. curvature: Aj; = Kjj — %’y,-jK
@ conformal rescale: Aj; = 1/1*4A,-J-

o conformal connection functions [/ = ”jkI:iJk = — ﬁU
- important for stability (combined with momentum constraints)

@ 17 evolved variables (1, 7, K,/N4,-J-, I:i)T vs 12 in ADM, + a, 3

*Baumgarte-Shapiro-Shibata-Nakamura-(Oohara and Kojima) 13/14



Today

@ Yes: 3+1, ADM, hyperbolicity & well-posedness, free evolution, BSSN
@ No: ID, BC, more ADM-like formulations & gauges

Next

Lecture 3
@ Spacelike formulations (GHG)

@ Characteristic formulations

Lecture 4
@ Numerical methods (method of lines, finite differences)

@ Toy models: implementation and convergence
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@ Yes: 3+1, ADM, hyperbolicity & well-posedness, free evolution, BSSN
@ No: ID, BC, more ADM-like formulations & gauges

Next

Lecture 3
@ Spacelike formulations (GHG)

@ Characteristic formulations

Lecture 4
@ Numerical methods (method of lines, finite differences)

@ Toy models: implementation and convergence

Thank you!
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