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Plan

@ Background & motivation:
numerical relativity,
partial differential equations,
Bondi-like coordinates

@ Main result:
hyperbolicity of GR in Bondi-like coordinates

@ Well-posedness of the characteristic problem of GR

Bonus:

@ Numerics & convergence
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Background & motivation



Numerical relativity

Einstein's field equations (EFEs): R, — 1R gap + Agap = BZE Ty

e Numerical (approximate)
solutions to EFEs

@ Finite time & space

@ Time evolution
(hyperbolic PDE system)

e Choose a gauge (coordinates)

Spacetime foliation
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Hyperbolicity

A (x") Opu + AP (x*) Opu + S(u, x*) =0,

where u = (uy, Uy, ..., uq)T, is the state vector of the system and
" I
all ... alq
A’LL — . .
I w
dq1 dqq

denotes the principal part matrices, with det(.A") # 0. Construct the
P° = (At)_1 APs,

where s’ is an arbitrary unit spatial vector.
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Well-posedness

The PDE problem has a unique solution that depends continuously on the
given data in a suitable norm.

e Strongly hyperbolic (SH) — well-posed IVP in the L2 norm
e Weakly hyperbolic (WH) — ill-posed IVP in the L2 norm

A numerical solution can converge to the continuum only for well-posed
PDE problems.
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Highly accurate gravitational waveform modeling
+
[

Cauchy | 7

r=cst

Cauchy-Characteristic extraction

see e.g. Winicour's 2012 Living Review and references therein 5/17



Holography & strongly coupled matter

Horizon

No

. Model phase transitions
(arXiv:2112.15478).

www.youtube.com/watch?v=qlhbpchr3gE

Th

Asymptotically AdS spacetime
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Bondi-like coordinates

@ coordinates: u,r,0,¢
@ vector basis: 0,0, ,05,04
@ O isnull & L to dy and 0y

Buu  Bur 8ubd Bugp

g = gur O 0 0
" gw 0 go 8oy
8us 0  8op 8po

Vacuum Einstein’s equations:

Evolution system: R,, = R,g = Ry = Rg9 = Rpp = Ry =0

Bondi, van der Burg & Sachs 1962, Winicour 2013, Cao & He 2013
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Main part: hyperbolicity



Hyperbolicity of GR in the Bondi-Sachs gauge

Vv
ds® = (rem — U2r2e2'y) du? +2e*P du dr

+2Ur?e®" dudf — r? (ezy do? + e ?sin% 0 d¢2) .

I+ The PDE system:
rﬁ _'Fi(arV)
Tlols 2 02U = Fa(y. 5.0, 08,037, 835)
"N 0,V = F3(v,8,017,0,8,0;U, 05, 058,05 U) ,
02y = Fa(v, 8, U, V, 07, 0:8,0;U,0;V a,ﬂ, 28,02U)

Linearize and first order reduction u = (5,v,U,V ,v,,U,, By ,vg)T:

A9,u+ A 9pu+ A% + S = 0.
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4
v

original problem

coord.

transf.

det(A") #0.

)

auxiliary problem

Atdu + A9u + A9pu + S = 0, where At = AY + A" and A” = A"
P — % (.At)_1 A? is not diagonalizable.

The Bondi-Sachs system is weakly hyperbolic.

Rendall 1990, Frittelli 2005 & 2006, TG, Hilditch & Zilhdo 2020
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Gauge structure of GR
The ADM equations linearized about Minkowski:

8t(5'y,-j = —2(5K,'j + 8(,65j) ,
8t(5K,'j = —8,-@504 — %8"8,(57,; - %8/8]5’7 + 8"8(,57j)k .

First order reduction u = (d~;;, dcv, 63, 6Kij, Opdij, Opdar, Dpd3i) T

Ps] Pec 0

otu ~ P°0su, with P°=1| 0 Pc O
0 0 Pp

Hilditch & Richter 2016 10/17



Pure gauge subsystem

Assume an arbitrary solution g, of R, = 0.

@ Infinitesimal coordinate transformation: x* — x* 4 &+
@ Perturbation to the solution: dg,, = —L¢guw
e 3+ 1split: © = n,&H, ¢/ = —/ ,&F

Pure gauge subsystem for flat background:
81}@ = (50&,
Oti = 0B + 0;0.

Given «, §3;, the pure gauge subsystem is closed.

Khokhlov & Novikov 2001 11/17



Pure gauge subsystem inheritance

Linearized ADM system:

Ps] Pec 0

du=P9u, P°=| 0 Pc 0
0 0 Pp

Assume an algebraic choice for «, 3;. Pure gauge subsystem:

s T
athaug(-:* = Pgaugeasvgauge, Vgauge = (@7 wl) :

The inheritance: Pg = Pg, ..

The result holds also for generic backgrounds & differential gauge choices.

Hilditch & Richter 2016 12 /17



Gauge structure of Bondi-like coordinates

Non-diagonalizable P along the 6, ¢ directions.
gu9 — gu¢> -0

Mapping between Bondi-like and ADM equations.

GR formulation with up to 2nd order metric derivatives:
@ In any Bondi-like gauge the PDE system is only WH.
e This CIBVP is ill-posed in the L? norm.
o CCE accuracy?

TG, Bishop, Hilditch, Pollney & Zilhdo 2021
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Main part: well-posedness



The toy models

Oyt = —Sy 5

u
Oth, ~[0:0] = —S,, O
Oy — F(X)3X¢ — 0 = _51/1 o)

o SH well-posed in [|u[2, ) = [ (#% + 12 + 1)

o WH well-posed in [[u]2p) = [ (62 + 42 +v% + (0.0)°)

For 54 = 1, the WH model is ill-posed in any sense.

14 /17



Recap

o GR in all Bondi-like gauges — weakly hyperbolic PDE system
The root: pure gauge structure g¥¢ = gt¢ =0
in out

“ v
N (/i ;

\C - ,,,V('/'
b f\ 5 —

e
// t

P = Pe

o lll-posed characteristic initial boundary value problem in the L2 norm

@ Accuracy of numerical results e.g. waveforms?
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An open question

GR formulations with up to 3rd order metric derivatives
(Newman-Penrose), can provide SH PDE system in Bondi-like gauges!.

This CIBVP is well-posed in the L? norm.

Question: What does this mean for the CIBVP of the previous systems
(up to 2nd order derivatives)?

1 Récz 2013; Cabet, Chrusciel & Wafo 2014; Hilditch, Kroon & Peng 2019; Ripley 2020 16 /17



An open question

GR formulations with up to 3rd order metric derivatives
(Newman-Penrose), can provide SH PDE system in Bondi-like gauges!.

This CIBVP is well-posed in the L? norm.

Question: What does this mean for the CIBVP of the previous systems
(up to 2nd order derivatives)?

Thank you!

1 Racz 2013; Cabet, Chrusciel & Wafo 2014; Hilditch, Kroon & Peng 2019; Ripley 2020 16 /17



Convergence tests

@ Accuracy of numerical solution: f — f, = O(h") — ||f — f4|| = O(h")
e Convergence factor: Q = (h] — hp,)/(hp, — h?) = (fe — fm)/(fm — )

@ Solve the same PDE problem with increasing resolution

Smooth data (L2 norm) Noisy data of amplitude A
(L2 & lopsided norm)

What is the behaviour of numerical error with increasing resolution?

Calabrese, Hinder & Husa 2006



convergence ratio
w

o

convergence ratio
-

In the L2

norm

'0 ---------------------------------

S loga(|[un, —un,|l/[lun, —un l) | ] e logz (||un,| I/ [1un, 1)
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In the lopsided norm

PR B BT PR AR B S A AT 33 KA A

ratio
- N w

----- loga (|uno|1/11un, [1)
— = loga(lun,|I/lun,I)
=== loga([|un,||/|lunl) -
— logz([lun,|I/[1un,l1)

convergence
=N W

Homogeneous (1st) & inhomogeneous (2nd-4th) weakly hyperbolic models.



Algebraic determination of well-posedness
For the initial value problem (IVP) with constant coefficients:
Ou = BPOpu+S = BPOpu + Bu,
after Fourier transforming in space (9, — iwp):

P(iw) = iw,BP + B — u(-,t) = ePW)F(w).

If |eP(i“)t] < Ke® K>1& aeRfort >0, the IVP is well posed in L2.

lu(-. )|z = [P F (W)l 12 < Ke®*||F]] 2 = Ke®|If] 2

If |ePUw)t] < Kie®t (1 + |w|9) — well-posed in a lopsided norm (weakly).

Eigenvalues of P(iw)

Gustafsson, Kreiss & Oliger “ Time Dependent Problems and Difference Methods”
Kreiss & Lorenz “Initial-Boundary Value Problems and the Navier-Stokes Equations”



Frame independence
Focus on the angular direction:

oiu + Béé)éu ~0 — O+ Jéﬁév ~0,

where J0 = Teil BY T, is the Jordan normal form and v = T971 u the
generalized characteristic variables. The non-trivial Jordan block yields

2
—at<2pU+”2ur—ﬁ9+ve>:o,
2
0tV — 0y (2,0U+2Ur—59+’}’9> ~0.

The generalized eigenvalue problem:
I (P*— 1) =0,

where M =1,2,---.



Energy estimates

2 2

SH: H“HL2 (Z¢) + |[u H W) T Hu|’1_2(zo)+H“HL12n(75) 7—
L f

z1

WH: 2||U”qm(/\/uf) + ||U||2i,,(75) + SUPX'HUHE,OU,:(TX,) //' :

. I

< 2HuH2in(/\/'0) + eXfHuHamt(%) ’ u/f// :

4 1

s %u] o

/, !

’ 0,
it To.’
in out
SH af! No WH
0. 9,




Energy estimates, model CCE & CCM

CCE may be well-posed if ||u||q exists. T
Lf

/7

CCM cannot be well-posed, because ||ul|;2 # [|u]|q. R :
N
uf ¢ I
4 1
’ 1
/, !
’ 0,
2t To.
in out
SH at! Mo WH
9. 9,
220
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Accuracy of numerical solution: f — f, = O(h") — ||f — fy|| = O(h")

Convergence factor: Q = (h? — h])/(hy, — hf) = (fe — fm)/(fm — fr)

llune =L 2up o,
Smooth data: Cger = log, c

he/2 hc/4 -
Iu‘hz/ uhc/27J‘hz/ uhc/4Hhc

Huhc_uexactHhc

Noisy data: Cexact = logy

hec /2
||J—h§/ Uhc/2*“exact”hc

L? norm: log, 700((/4%)

i . O(Ap.)
Ane/2) Lopsided norm: log; 5

O(Ap /2)



	Toy models and numerical experiments

